

Making Predictions at the

Ashok N. Srivastava, Ph.D.
Principal Investigator, IVHM Project
Group Leader, Intelligent Data Understanding Group

Santanu Das, Ph.D.
Arizona State University
NASA Ames Research Center

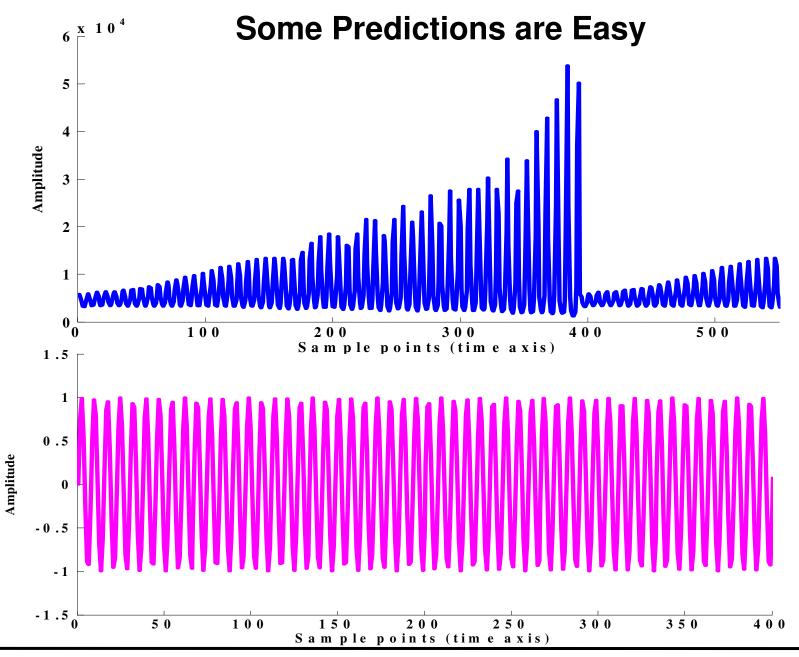
Some Predictions are Difficult

"I'm a little surprised. With such extensive experience in predictive analysis, you should've known we wouldn't hire you."

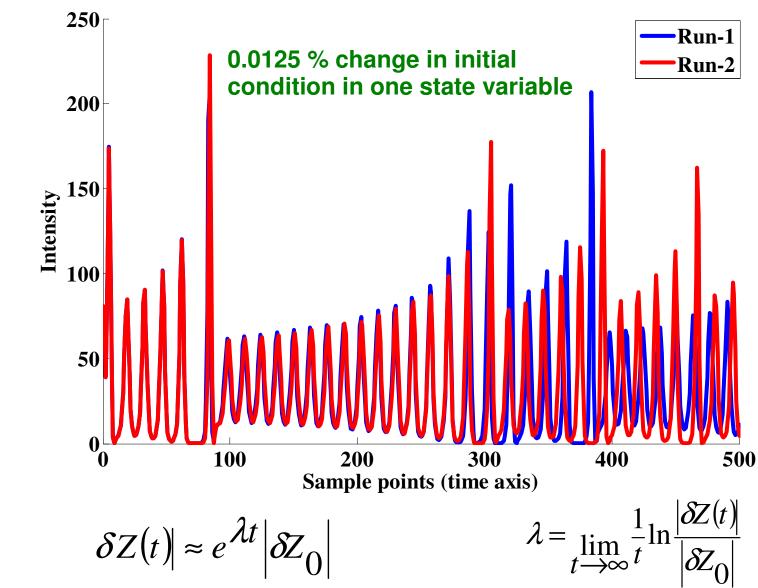
One of Leibniz's Views on Prediction

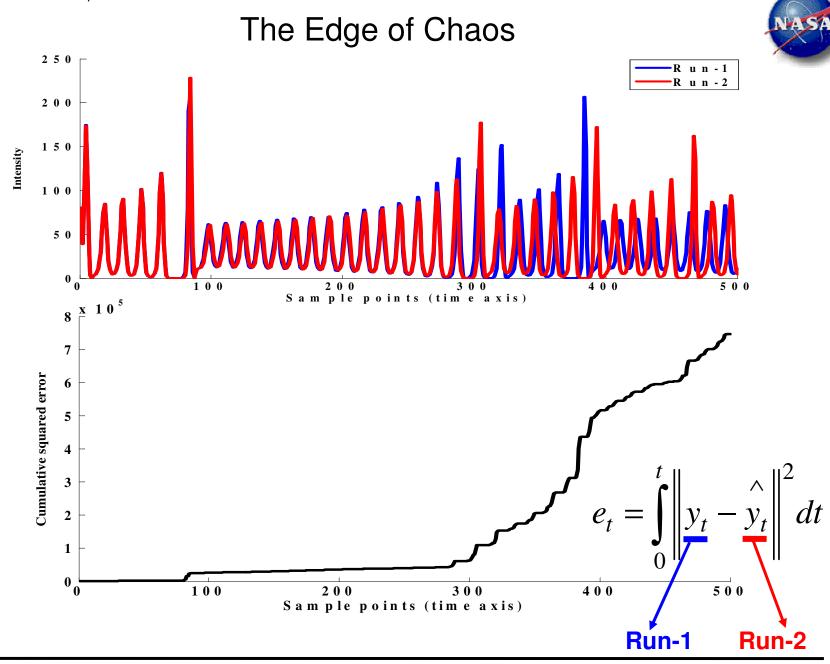
If someone could have a <u>sufficient</u> insight into the inner parts of things, and in addition had remembrance and intelligence enough to consider all the circumstances and to take them into account, he would be a prophet and would see the future in the present as in a mirror.

From ChaosBook.org and Wikipedia



Lyapunov Exponents and the Limits on Predictability

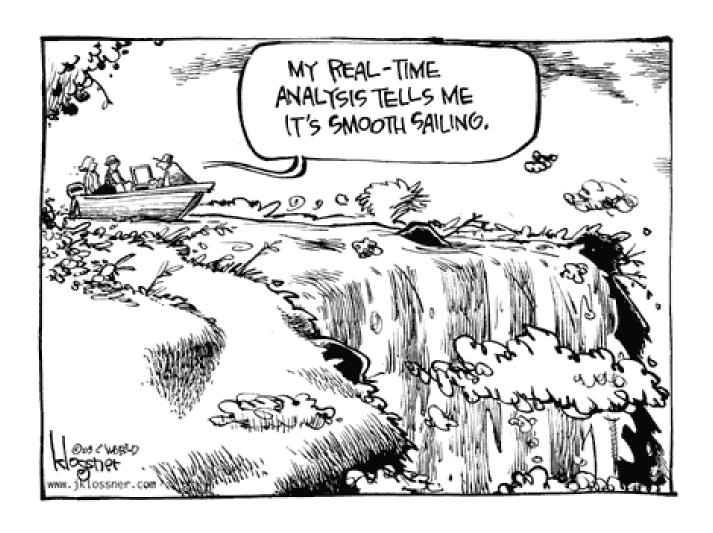




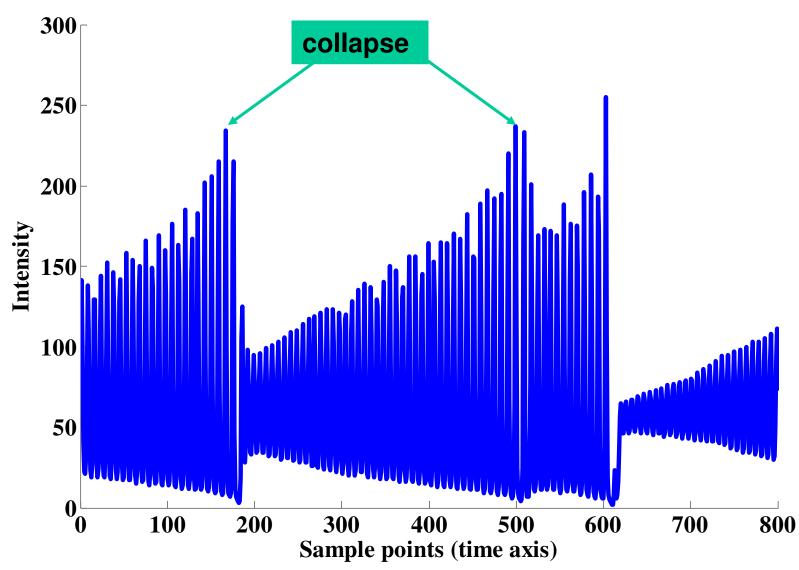
Extreme Shred Metal www.edgeofchaos.us

Applications to Laser Systems

- Develop a set of algorithms for prognostics using data from a well-studied ammonium laser system that has chaotic behavior.
- Predict the future dynamics of this system
- Generate a signal that represents the confidence in the prediction.



Observed Laser Intensity



NH₃ Laser Model

One can approximate the dynamical behavior of the laser using ideas from nonlinear dynamical systems.

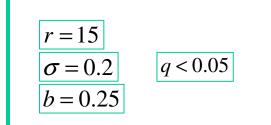
Lorenz-Hankel Model

$$\frac{dx}{dt} = \sigma(y - x)$$

$$\frac{dy}{dt} = rx - y - xz$$

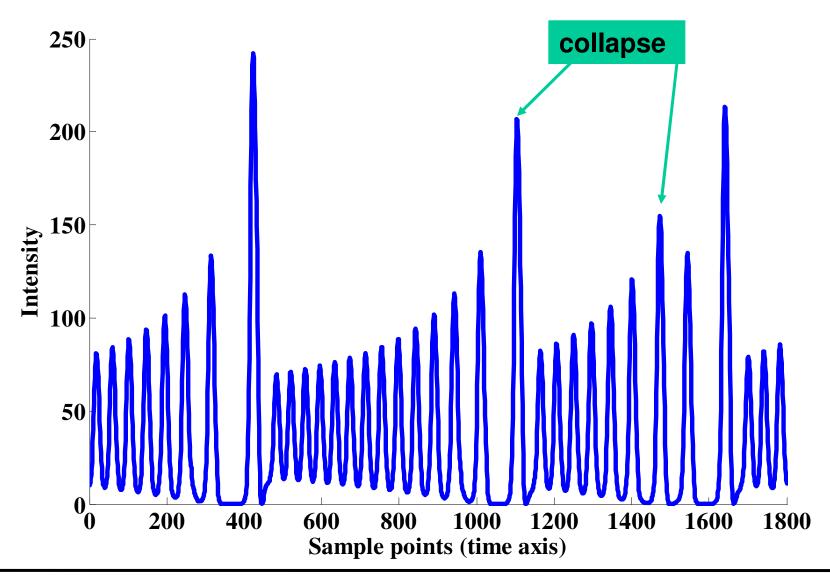
$$\frac{dz}{dt} = xy - bz$$
Nonlinear terms

r, σ, b Control Parameters



The values of sigma, r, b and q determine the nature of the chaotic attractor.

Lorenz-Hankel Model



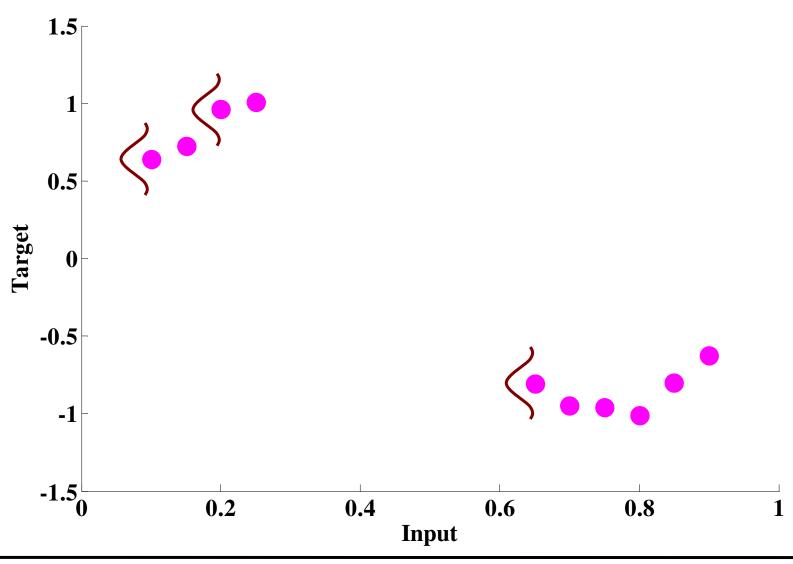
Gaussian Process (GP)

Any random function is a GP, if $\{f(x_1), f(x_2), ..., f(x_n)\}$ is a random vector which is normally distributed for all $x_1, x_2, ..., x_n$.

$$p(f(x_1), f(x_2),..., f(x_n)|x_1, x_2,..., x_n) = N(m(x), C(x_i, x_j))$$

Each function is characterized by its mean m(x) and variance $C(x_i, x_j)$ $n \times 1$ $n \times n$

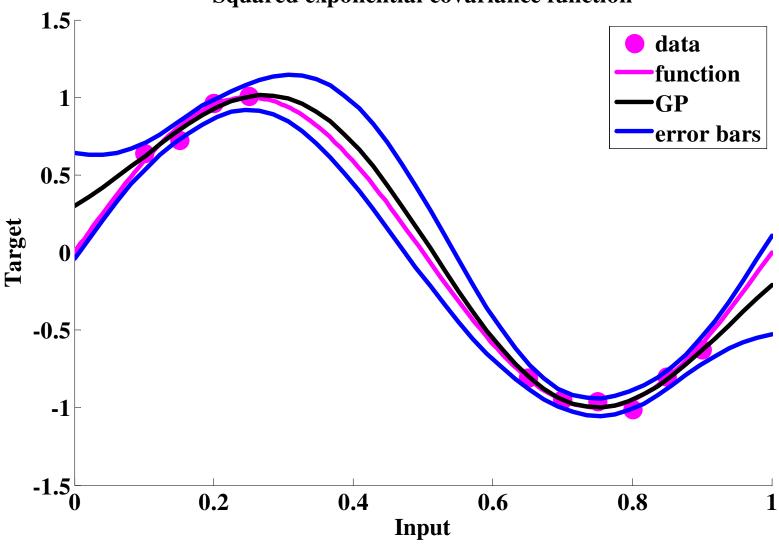
Gaussian Process Regression Chooses the Best Function to Explain a Data Set



The Covariance Function Determines the Fit



Gaussian Process Regression Example



Example Covariance Functions

Example: When the process is stationary

Assumption: function smooth & continuous

Mean m = const. (here zero)

Input dimension

$$C(x_{i}, x_{j}) = \Theta \exp \left(-\frac{1}{2} \sum_{k=1}^{D} \frac{(x_{i}^{k} - x_{j}^{k})^{2}}{\sigma_{k}^{2}}\right)$$
Hyperparameters

Gaussian

$$C(x_i, x_j) = \langle x_i, x_j \rangle^2$$
 Quadratic

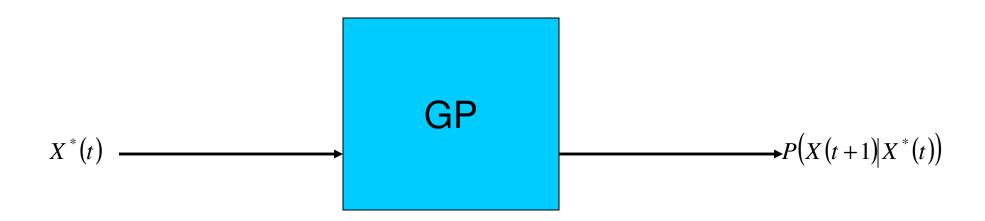
Approach

 Using delay coordinate embedding (and thus Takens' Theorem) we build a Gaussian Process Regression (GPR) to predict:

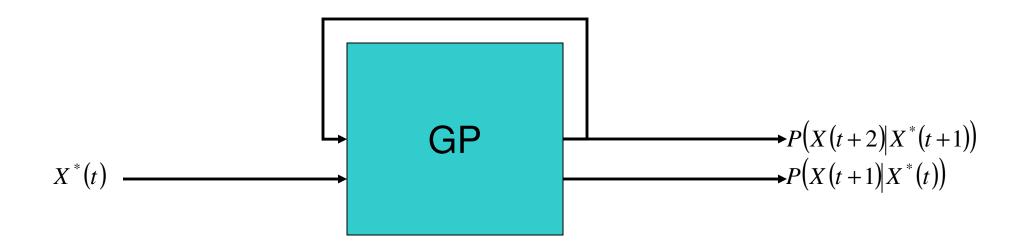
$$P(X(t+1)|X(t),X(t-1),...,X(t-\underline{d})) = P(X(t+1)|X^*(t))$$
Embedding dimension

 Once this distribution is known, we can make predictions through iterating the distribution.

One Step Ahead Predictions

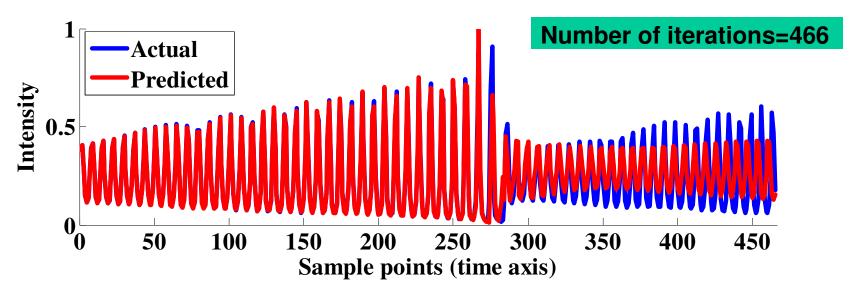


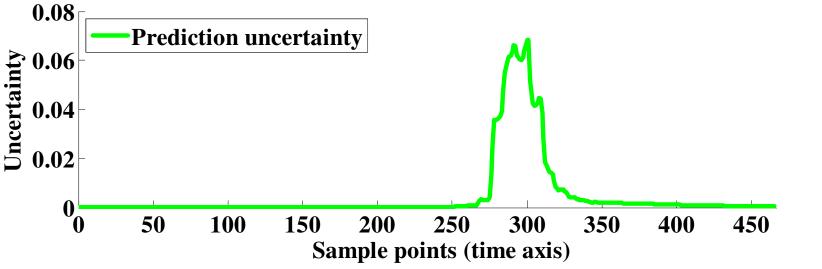
Iterated Predictions



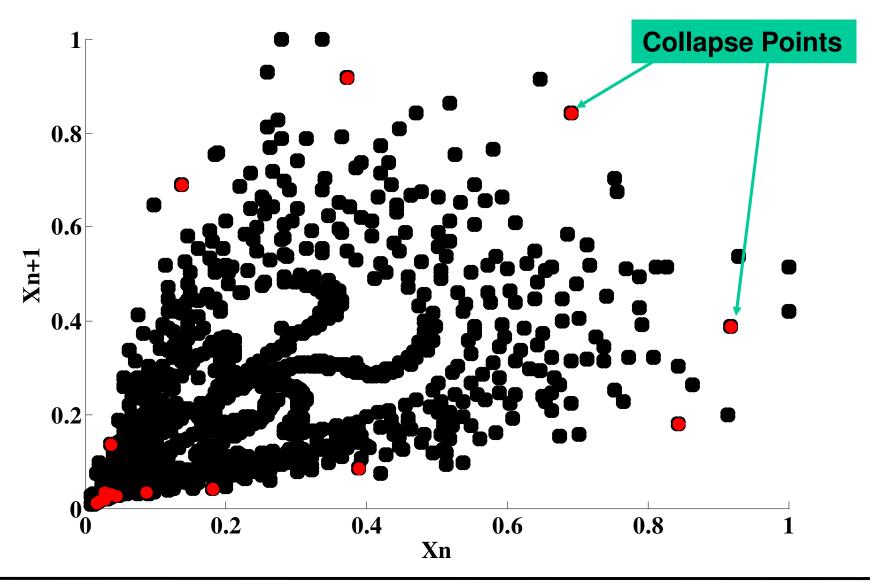
i.e., we feed the output of the model into its input to make a prediction of $P(X(t+2)|[P(X(t+1),X(t),X(t-1),...,X(t-d+1))]) = P(X(t+2)|X^*(t+1))$ From past prediction iteration

Iterated Gaussian Process Predictions

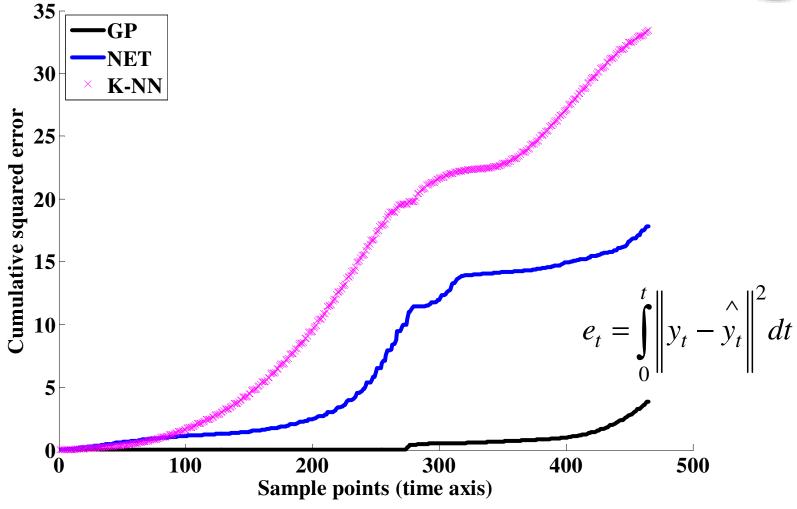




Phase Portrait



Cumulative Error Curves



Threshold

Cumulative squared error <= 1

GP	Bagged NN	K-NN
397	84	79

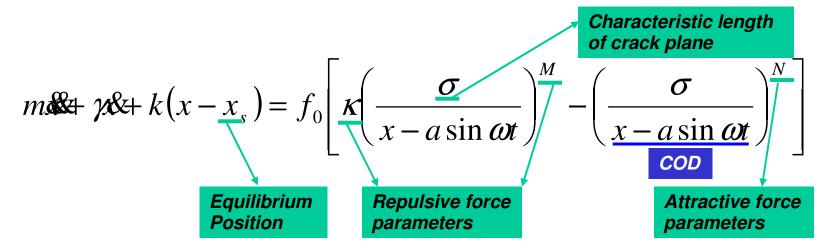


Results

- We have shown that we can make iterated forecasts and detect a precursor to the sudden drop in intensity using kernel methods.
- We can generate a meaningful measure of prediction certainty.
- This quantity seems to indicate substantial increases in uncertainty near the collapse.

Structural Application

- Presence of partially closed cracks in objects can be identified using an ultrasonic technique. (Ref: K Yamanaka)
- Interaction of high amplitude ultrasonic waves with closed cracks generate subharmonic components.



 The vibration of the Crack Opening Displacement (COD) exhibits chaotic behavior if:

$$x_s = 10\sigma, f_0 = 15, m = 1, \gamma = 0.5, k = 0.2, \omega = 1, x(t_0) = 1.8\sigma$$
 $a = 8\sigma$

Further Work

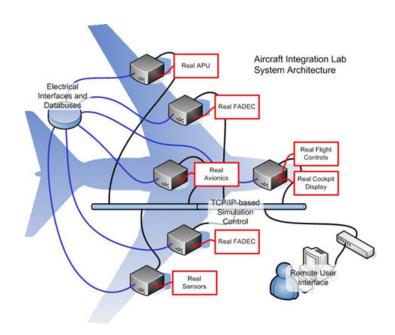
- Understanding the limits of predictability for these systems
- Significant testing with respect to forecast variability and quality of precursor detection.
- Analysis of forecast horizon.
- Test methods on data from aircraft propulsion systems.

IVHM Data Mining Lab

NASA

Mission of the IVHM Data Mining Lab

The lab enables the dissemination of Integrated Vehicle Health Management data, algorithms, and results to the public. It will serve as a national asset for research and development of discovery algorithms for detection, diagnosis, prognosis, and prediction for NASA missions.



Features of the IVHM Data Mining Lab

Datasets

- Propulsion, structures, simulation and modeling
- ADAPT Lab
- Icing
- Electrical Power Systems
- Systems Analysis
- Flight and subscale systems
- Fleet-wide data
- Multi-carrier data

Open Source

- Code
- Papers
- Generation of an IVHM community

Selected Discovery Tools

- Inductive Monitoring System
 (IMS) cluster-based anomaly
 detection
- Mariana Text classification algorithm
- Orca Distance-based outlier detection
- ReADS Recurring anomaly detection system for text
- sequenceMiner anomaly detection for discrete state and mode changes in massive data sets.

Key Research Issues Addressed in the IVHM Data Mining Lab

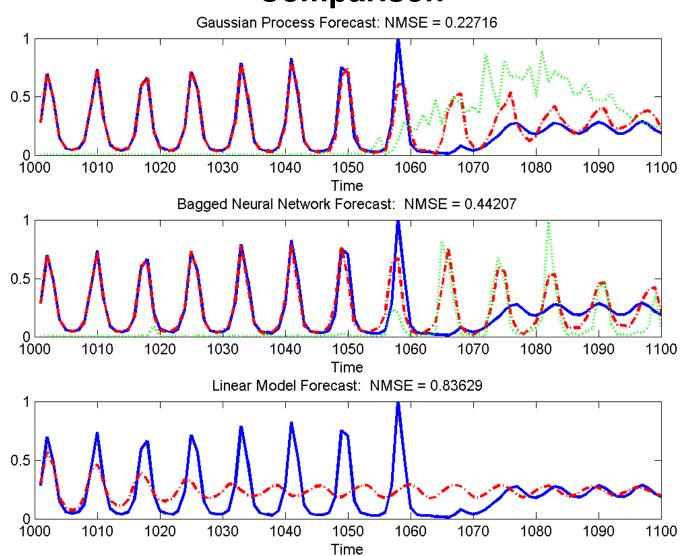
- Real-time anomaly detection
- Model-free prediction methods
- Hybrid methods that combine discrete and continuous data
- Distributed and privacy-preserving data mining
- Analysis of integrated systems

Appendix

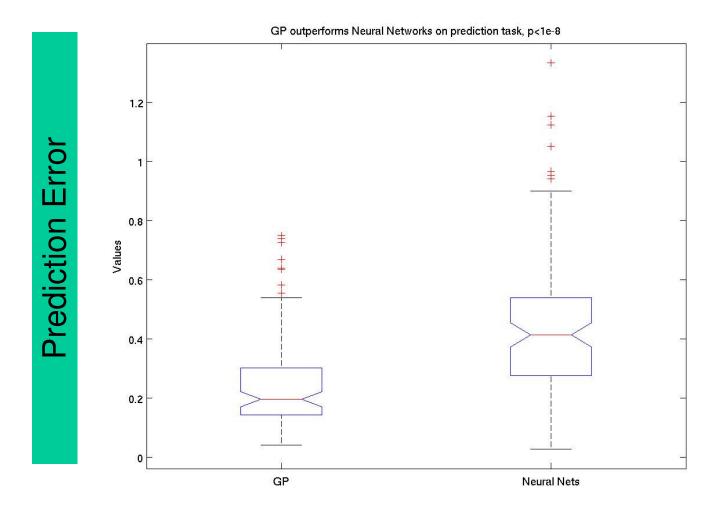
NH₃ Laser Phenomena

- The laser undergoes periods of buildup of intensity followed by a sudden collapse in intensity.
- Sometimes the collapse is significant, and other times it is relatively small.
- It is hard to predict what type of collapse will occur (i.e., it is a chaotic process).

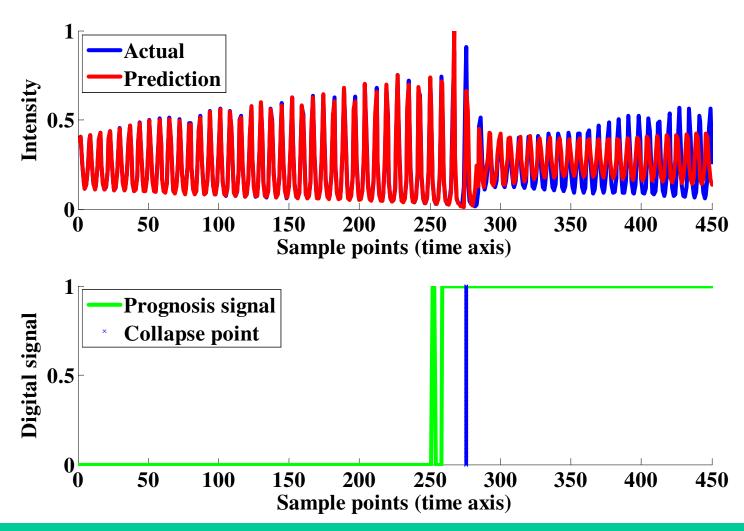
Comparison



Statistical Comparison of GP's and Neural Networks



Prognostic Signal



Prediction signal leads the actual collapse point by 24 sample points

K-step ahead forecasts

- We iterate the Gaussian Process K times to generate this time series.
- Performance comparison
 - » Bagged Neural Networks
 - » Linear Model

 Forecasting metric: normalized mean squared error

Method

 We address this problem using the theory of Gaussian Processes which assumes that any subset of data for a vector X is Gaussian distributed (from wikipedia).

$$\vec{\mathbf{X}}_{t_1,\ldots,t_k} = (\mathbf{X}_{t_1},\ldots,\mathbf{X}_{t_k})$$

Using <u>characteristic functions</u> of random variables, we can formulate the Gaussian property as follows: $\{X_t\}_{t \,\square\, T}$ is Gaussian if and only if for every finite set of indices $t_1, \, ..., \, t_k$ there are positive reals σ_{lj} and reals μ_j such that

The numbers σ_{ij} and μ_j can be shown to be the covariances and means of the variables in the process.

References

- A. S. Weigend and N. Gershenfeld, "Time Series Prediction: Forecasting the Future and Understanding the Past", 1994
- Gaussian Process Regression, J.S. Taylor, 2002